MATH 596 - INTRODUCTION TO MODULAR FORMS WINTER 2016 ASSIGNMENT 4

DR. STEPHAN EHLEN

Problem 1

Let $\tau \in \mathbb{H}$ be a fixed point of an element $\gamma \in \Gamma = \mathrm{SL}_2(\mathbb{Z})$, with $\gamma \neq \pm \mathrm{I}_2$.

- 1. Show that τ is either equivalent to $\rho = \frac{1}{2} + \frac{\sqrt{-3}}{2}$ or to *i* (under the action of Γ).
- 2. Determine the stabilizers Γ_{ρ} of ρ and Γ_i of i in Γ . Note: These points are called *elliptic fixed points*.

Problem 2

Let f be a holomorphic modular form for Γ without any zeroes in \mathbb{H} . Then $f(\tau) = c \cdot \Delta(\tau)^m$ for $m \in \mathbb{N}_0$ and $c \in \mathbb{C}$.

Problem 3

- 1. The derivative of a modular function (a meromorphic modular form of weight 0) is a meromorphic modular form of weight 2.
- 2. Let $f, g \in M_k$. Then the Rankin-Cohen-Bracket [f, g] := f'g g'f defines a holomorphic modular form of weight 2k+2. (All derivatives are with respect to $\tau \in \mathbb{H}$.)