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Problem 1

Recall the definition of the Bernoulli numbers Bm as coefficients of the Taylor
expansion
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1. Show that Bm ∈ Q and B2m+1 = 0 for all m ∈ N.

2. We also have
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3. Show the expansion
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Hint: Consider the function
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z
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(for fixed z ∈ C \ Z). Show that f has only poles of order 1 and 2 and is
holomorphic outside of Z∪{z}. Then consider a suitable square Q in C and
calculate the integral of f over the boundary of Q.

4. Show the formula (for k ∈ N)
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Hint: Show that
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Problem 2

Show the Hurwitz identity:

σ7(n) = σ3(n) + 120
∑
r,s=n

σ3(r)σ3(s).

1



2 DR. STEPHAN EHLEN

Problem 3

Let f ∈ Sk be a cusp form with Fourier expansion
∞∑

n=1

anq
n.

Show that there is a constant C > 0, such that

|an| ≤ Cnk/2.
Hint: Consider the function F (τ) = vk/2f(τ) (with v = Im(τ)), which is rapidly
decreasing for v →∞ to show that |f(τ)| ≤ c · v−k/2 for some c > 0.


