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Problem 1

Recall the definition of the Bernoulli numbers B,, as coefficients of the Taylor

expansion
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1. Show that B,, € Q and Ba,,+1 = 0 for all m € N.
2. We also have
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3. Show the expansion
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Hint: Consider the function
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(for fixed z € C\ Z). Show that f has only poles of order 1 and 2 and is
holomorphic outside of ZU{z}. Then consider a suitable square @ in C and
calculate the integral of f over the boundary of Q.

4. Show the formula (for k € N)
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Hint: Show that
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Problem 2

Show the Hurwitz identity:

o7(n) = o3(n) + 120 Z o3(r)os(s).
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Problem 3

Let f € Sk be a cusp form with Fourier expansion
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Show that there is a constant C' > 0, such that
lan| < CnF/2.

Hint: Consider the function F(7) = v*/2f(7) (with v = Im(7)), which is rapidly
decreasing for v — oo to show that |f(7)| < ¢-v~*/2 for some ¢ > 0.



